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Climate change is already affecting fish productivity and distri-
butions worldwide, yet its impact on fishing labor has not been
examined. Here I directly link large-scale climate variability with
fishery employment by studying the effects of sea-surface pres-
sure changes in the North Atlantic region, whose waters are
among the world’s fastest warming. I find that climate shocks
reduce not only regional catch and revenue in the New England
fishing sector, but also ultimately county-level wages and employ-
ment among commercial harvesters. Each SD increase from the
climatic mean decreases county-level fishing employment by 13%,
on average. The South Atlantic region serves as a control due to
its different ecological response to climate. Overall, I estimate that
climate variability from 1996 to 2017 is responsible for a 16% (95%
CI: 10% to 22%) decline in county-level fishing employment in
New England, beyond the changes in employment attributable to
management or other factors. This quantitative evidence linking
climate variability and fishing labor has important implications
for management in New England, which employs 20% of US
commercial harvesters. Because the results are mediated by the
local biology and institutions, they cannot be directly extrapo-
lated to other regions. But they show that climate can impact
fishing outcomes in ways unaccounted by management and offer
a template for study of this relationship in fisheries around
the world.

fishery labor | climate impacts | New England

The world’s marine fisheries have been declining for decades,
primarily due to overfishing (1). This jeopardizes both the

fish stocks’ future and the livelihoods of millions who rely on
them. Some fishery managers have succeeded in restoring stocks
by restricting effort and, more recently, placing quotas on catch
(1), but not all fish populations have rebounded as hoped (2).
A growing body of literature highlights the effects of climate on
fish populations (3) in the context of warming waters (2, 4–6)
and interannual variability (7). Models show that failure to
account for climate and other forms of uncertainty can exacer-
bate the pressure stocks face from fishing and ultimately lead
to stock collapse (8, 9). This highlights the need for better
empirical understanding of climate’s impact on fisheries and the
communities that depend on them.

Previous studies have extrapolated the results of ecosystem
models under climate change to catch and revenue (10, 11) or
used idealized management scenarios to project potential eco-
nomic impacts (12) without empirically examining adaptations or
management responses. Yet it is not obvious how fishers, fishery
managers, and others in the industry will actually respond. For
example, depending on local institutions, a fisher facing dimin-
ishing stocks could switch to new species; move to a different
region; or exit the industry, among other options. Studies of
labor markets in another climate-sensitive natural resource sec-
tor, agriculture, show that warming has already led to a range
of outcomes, including short-term reallocation, wage rigidity,
long-term income loss, and migration (13–15).

In this paper, I empirically measure the impact of climate vari-
ability, which includes its observed extremes, on catch, revenue,
wages, and employment in the New England fisheries sector. The

sector employs an estimated 34,000 commercial harvesters or
about 20% of the 166,952 in the United States (16) and a small
fraction of the 18.4 million worldwide (1). New England’s fish-
eries are conducive to empirical study of climate’s effects because
they are among the first to experience rapid ocean warming (2,
17), exhibit strong interannual variability (7), and have a long
history of management and data collection (16, 18).

Many studies use temperature anomalies (2) or projections
(6) as a proxy for climate change. To avoid omitted variable
bias (19), I do not use a local weather variable and instead use
a climate index, the North Atlantic Oscillation (NAO), shown
in Fig. 1A (SI Appendix, section 1B). As the dominant regional
climate signal in the North Atlantic ocean, NAO influences mul-
tiple environmental variables that affect fishing behavior and fish
ecology, such as sea-surface temperature (Fig. 1B), wind speed,
ocean mixing, and their interactions (20–23), systemically modu-
lating ocean productivity (24). NAO has also been identified as a
driver of rapid changes in climate (23).

The effects of positive NAO phases and warmer-than-average
sea surface temperatures on fish productivity off the coast of
New England have been well documented for lobsters, shell-
fish, and groundfish, especially during the period of spawning
through recruitment, when stocks are most vulnerable to physi-
cal environmental conditions (2, 6, 7, 25). This body of literature
empirically measures how these environmental shocks can lower
biomass, landings, or catch for these valuable fisheries. Previ-
ous work demonstrates how a positive NAO in the first year
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Fig. 1. NAO. (A) NAO index. (B) NAO and sea-surface temperature. A shows
the winter (DJFM) NAO index. B shows the detrended correlation coefficient
between DJFM sea-surface temperature and DJFM NAO index. Positive cor-
relations are red and negative correlations are purple. Study regions include
New England in orange and the South Atlantic region in green.

of life persists through the biomass of every age class of New
England cod until they are old enough to be caught (7) and
shows how lagged NAO events correlate with declines in catch.
If natural mortality is greater than managers anticipate or fish
productivity is lower than expected, it can lead to quotas that
are unintentionally set too high and consequently to overfishing
(2). Theoretical models suggest that fishing practices that fail to
account for climate impacts on productivity can lead to subopti-
mal economic harvest, resource rent declines, and even potential
collapse (8, 9).

The theoretical pathway from climate shocks to labor out-
comes is straightforward. Declines in catch due to NAO are
expected to reduce revenue to the extent that fishers are price
takers in the fish market and prices are constant. Commercial

fishing crews in the eastern United States are often paid in shares
(26), so if revenues decline, wages would be expected to decline
with them. This could also lead to decreased employment if crews
have a reservation wage below which they will not enter fishing
in a given year.

Tracking this pathway empirically, however, is complicated by
the fact that the intermediary variables (catch and revenue) link-
ing NAO to employment both influence and are influenced by
each other, making it hard to identify the direction of causality.
For example, if a stock is overfished, management is required to
reduce catch until stocks are brought back to sustainable levels.
This reduction in catch can lead to a decline in revenue, which
can reduce wages and employment. Less labor could lead to less
fishing effort, which could increase the fish population, allow-
ing management to increase the total allowable catch (TAC).
Notably, the same cycle can theoretically be induced by NAO
reducing recruitment, which could deplete stocks and trigger
management to reduce catch.

Unlike catch and revenue, NAO is produced independent of
the fisheries system, in that NAO may alter fish populations,
but changes to fish population, catch, or labor are not expected
to alter NAO. This one-way relationship allows for an analysis
that links NAO directly to year-to-year variation in each inter-
mediary variable without attempting to disentangle how those
intermediary variables interact.

I compare historical NAO data with total county-level fish-
ing wages, employment, and establishments in New England. For
example, I compare fishing employment during a positive phase
of NAO to fishing employment during a neutral phase, effectively
using the same group of fishers as a control for itself. I do this for
all NAO events to understand how employment responds to a
1-SD increase or decrease from the climatic mean.

It is also useful to compare all NAO events in New England
to those in a control region whose stocks are not systemati-
cally impacted by NAO (Materials and Methods). Here I exploit
the fact that NAO’s effect on different fish stocks varies due
to ecological differences. In New England, there is evidence
that catch of the commercially valuable species is negatively
correlated with sea-surface temperatures (SSTs) or NAO (2,
6, 7, 25). In the South Atlantic region, there is a mixture of
warm-water and cold-water species. Warm-water species prefer
the warmer-than-average winter SSTs associated with a positive
NAO phase, whereas cold-water species are adversely affected
by these anomalies (27). Shrimp and blue crab account for
53% of commercial revenue in the South Atlantic, and most
shrimp stocks in the South Atlantic are warm-water species (27).
Most of the groundfish stocks, such as summer flounder, and
pelagic stocks, such as bluefish, are cold-water species. Since
the employment data (SI Appendix, section 1A) mostly reflect
individuals employed as fishing crew that can switch between
boats and fish stocks throughout the year, it is plausible that
they can mitigate shocks in the South Atlantic, but not in
New England.

To test whether the South Atlantic is an appropriate control
group, I compare catch and revenue in years before and after
a 1-unit (1-SD) increase in NAO for the South Atlantic and
New England (Materials and Methods, NAO and catch and rev-
enue). Catch and revenue are aggregated across species for each
region, to account for the ability of crew to switch boats and
stocks throughout the year. This reduces the number of obser-
vations, but enables comparing year-to-year variation in regional
fishing revenue with total county-level wages and employment. In
addition to examining the relationship between catch and a con-
temporaneous NAO event, I look at the relationship between
catch and past NAO events in the 6 y prior. This is because
fish are most vulnerable to their environment from spawning to
recruitment (2, 6, 7), making impacts from NAO undetectable
in the catch data until they are mature enough to be caught
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(7). Finally, I check to see whether year-to-year changes in
management are correlated with NAO, to ensure those changes
are not confounding the results.

Results
After accounting for secular time trends, the analysis reveals that
increases in the NAO signal initially reduce total catch in New
England by 2%, but not in the South Atlantic. Fig. 2A shows this
reduction persists for 5 y. The effect’s persistence is expected,
given that many stocks have size restrictions on catch that trans-
late to an age at catch (SI Appendix, Table S1). For instance,
squid and some shrimp are typically caught in their first year of
life, most groundfish between age 2 to 4 y, and groupers and some
groundfish such as haddock and witch flounder around 4 to 7 y.
A majority of fish are caught by age 6 y. Findings are consistent
for models with only 1 NAO lag up to 6 NAO lags (SI Appendix,
Tables S3 and S4), with the magnitude of the effect increas-
ing to a 10% decline in catch as lags are added to the model.
This is consistent with previous literature showing the lagged
effect of NAO on catch (7). As time progresses from the ini-
tial NAO shock, Fig. 2A shows a cumulative effect over time as
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Fig. 2. Climate effect on regional catch. (A) Differential climate impact on
catch. (B) Differential climate impact on revenue. A shows the cumulative
impact of NAO on regional fish catches, and B shows the cumulative impact
of NAO on regional fish revenue. Regression coefficients are shown using
Eq. 1 with 6 lags of NAO and a fifth-order polynomial time trend. The x axis
displays the number of years after a 1-unit increase in the NAO index. SEs use
the Newey–West adjustment with a bandwidth of 10 y. A 95% confidence
interval is shown.

more stocks enter the pool of catch affected by it (SI Appendix,
section 2).

The impact of NAO on regional revenue follows the same pat-
tern as the impact on catch. Fig. 2B shows that a 1-unit increase in
NAO reduces New England commercial fish revenue by 1% ini-
tially, which accumulates to a 13% decline 6 y later. NAO is not
significantly correlated with South Atlantic catch and revenue
(Fig. 2), even under most alternative lag structures (SI Appendix,
Tables S4 and S6). This is consistent with literature (27) that
finds some warm-water stocks in the South Atlantic benefit from
winter SST increases, while others receive negative shocks. This
supports the use of a difference-in-difference strategy that com-
pares the effects of NAO on fishing labor in New England, the
treated region, to the South Atlantic, the control (Materials and
Methods, NAO and fishing labor).

Over time, the supply shock measurably reduces labor de-
mand. Using a difference-in-difference approach (Eq. 3), I com-
pare the effects of NAO on wages and employment in the 2
regions. Fig. 3 shows that a 1-unit increase in the NAO index
reduces fishing employment by 13% and wages by 35%, effects
that persist for several years. Conversely, a 1-SD decrease in
NAO increases employment by 13%. Fishing establishments,
both employers and nonemployers, follow similar patterns with
smaller magnitudes (SI Appendix, Tables S9 and S10).

Using a hindcasting model, I hindcast employment with and
without NAO (assuming NAO is in a neutral phase for every
year) while holding everything else fixed (SI Appendix, section 7).
Taking the difference between these 2 models, I estimate that
NAO is responsible for an on-average 16% decline in county-
level fishing employment in New England compared to the South
Atlantic, with a 95% confidence interval of 10% to 22%, from
1996 to 2017. This is due to large positive NAO phases in
the 1990s (Fig. 1A). For comparison, in this time period, aver-
age county-level fishing employment declined by about 60% in
New England. In other words, the declines attributable to NAO
in the average New England county were about 27% of the
overall decline.

A series of robustness checks test the model∗’s sensitivity to
different lag structures (SI Appendix, Tables S7–S9), time peri-
ods (SI Appendix, section 1A), and functional form (SI Appendix,
section 3 and Fig. S1), such as running the model in levels instead
of logs (SI Appendix, Table S14). Contemporaneous effects and
early lags are sensitive to these specifications, but not later lags,
consistent with the impacts on catch.

Many variables beyond climate can impact fishery employ-
ment. However, unlike variables such as prices, costs, and man-
agement that can simultaneously impact fish populations and be
impacted by them, NAO cannot be impacted by fisheries. The
analysis captures any changes to these other variables that may
be driven by NAO. For instance, if NAO reduces reproduction,
this can impact subsequent stock status, triggering management
to reduce quotas, which could in turn affect employment.

To control for other potential drivers of employment, the main
specification uses year fixed effects to account for any annual fac-
tors (such as fuel prices, inflation, and the recession), as well as
fishery policies applied to both regions (such as the reauthoriza-
tion of the Magnuson–Stevens Act in 2006). County fixed effects
are used to account for variation in local economies, employ-
ment, and fishing practices. The results strengthen with a series
of robustness checks. Since the 2 regions are managed by dif-
ferent councils, have different proportions of commercial and
recreational fisheries, and comprise different stocks, regional
time trends are added, along with an indicator variable to con-
trol for adoption of catch-share management (sector programs)

*See NAO and fishing labor.
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Fig. 3. Climate effect on New England fishing livelihoods and other indus-
tries. (A) Wages. (B) Employment. (C) Establishments. Shown is the effect
of current and past NAO on (A) wages, (B) employment, and (C) estab-
lishments in “treated” New England counties relative to unaffected South
Atlantic counties. Regression coefficients are shown using Eq. 3 of employ-
ment on lagged NAO events as well as county and year fixed effects. The x
axis displays the number of years after a 1-unit increase in the NAO index.
Commercial fishing is in blue, unaffected industries are in gray, and the
extraction industry is in purple. SEs are clustered at the county level. A 95%
confidence interval is shown.

in New England, and results remain consistent (SI Appendix,
Tables S16–S21). To address management confounders that do
not change smoothly over time, I test whether lags of NAO are
correlated with effort controls, such as annual total allowable
catch, restrictions on the number of days at sea, and the number
of active lobster traps in New England (SI Appendix, section 6).
There are few significant correlations between lags of NAO and
these management variables (SI Appendix, Fig. S3), indicating
that management is unlikely to confound the analysis.

To check for unobserved confounders, I run falsification tests.
First, I add leads of NAO. Wages and employment do not show
any significant correlations to leads of NAO, and the addition of
leads does not change the significant effects on lags of NAO (SI
Appendix, Table S14). Second, the model is run using the same
counties that have fishing employment on employment in other
industries, such as the finance and insurance, education, arts,
and recreational industries and tourism. These industries show
no correlation with NAO under different lagged structures (SI
Appendix, Tables S24–S28).

Discussion
In a managed fishery, it is reasonable to assume that manage-
ment is a key driver of outcomes such as catch, revenue, and
employment. These findings do not contradict that assumption,
but they reveal that, at least in New England, climate variation
is also affecting these outcomes in a way that is not systemati-
cally correlated with changes in management (SI Appendix, Fig.
S3). Further research should explore why management does not
appear to respond to climate variability.

The finding that fishers are leaving fishing in response to NAO
events raises the question, Where do they go? The data offer
suggestions, but not a definitive answer. Only 2 other sectors
have NAO effects with the same lagged structure as fishing: the
extraction industry and unemployment. These effects were mea-
sured using the same counties that have fishing employment data.
Another possibility is that fishers spill over into adjacent regions
(28, 29). To guard against this spillover, the analysis omits the
Mid-Atlantic region, focusing on 2 regions that are not adjacent
to each other. An examination of vessel-permit data (30) for all
federal, commercial permits on the Atlantic coast and county
labor-force data finds no evidence that fishers from New England
are landing in the South Atlantic, moving their boats to the
South Atlantic, or leaving New England and moving to the South
Atlantic (SI Appendix, section 5). Fig. 3 shows a positive correla-
tion between NAO and employment in the extraction industry.
The effect matches the declines in employment in the fishing
industry in levels (SI Appendix, Table S29, column 7). This effect
is only in counties with commercial fishing and not on all extrac-
tion counties in New England (SI Appendix, Table S29, column
8). Finer-resolution data would need to be gathered on a busi-
ness level to determine whether climate-driven changes in fish
productivity are pushing fishers into unemployment, reallocating
them into extraction, moving them out of the East Coast, pushing
them into retirement, reallocating them randomly into multiple
other sectors, or causing some alternative scenario.

NAO shocks spill into fish and seafood markets, decreasing
employment by 7% with a 1-y lag, but do not persist (SI Appendix,
Table S22). There is no impact on fish and seafood wholesalers
(SI Appendix, Table S23). This implies that these sectors can
more readily adjust their supply in response to climate variability.
This may be due to access to other markets such as aquacul-
ture, access to catch from other regions, imports, or temporal
smoothing.

Unlike fishing permit holders who are restricted to permitted
species and may not be able to smooth supply, fishing crews could
switch between fisheries. These findings highlight that the port-
folio of commercial fish stocks in New England may be mostly
impacted by positive NAO events, whereas the portfolio of
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commercial fish stocks in the South Atlantic is more resilient to
these impacts. These findings show that regions’ fisheries differ
in not only biological resilience to climate change (31), but eco-
nomic stability as well. Further work on population diversity and
edge biomes undergoing range shifts is needed to understand the
regional impacts of climate change in different contexts.

The link demonstrated here between climate variability and
jobs in the North Atlantic suggests that future analyses of cli-
mate’s effect on fisheries must consider potential employment
impacts and offers one approach for doing so. Whether this
relationship applies to other regions of the world will depend
on how resilient their ecosystems are to climate variability and
how their fishing is managed. Given New England’s long his-
tory of management, it is possible that livelihood losses might
be even greater in less-developed fisheries. Future research in
the tropics, especially regions that experience high climate vari-
ability such as the tropical Eastern Pacific, may offer further
insight into how climate’s impacts on fishery productivity and
catch translate to livelihood losses in small-scale fisheries. While
climate variability has always affected fish and fisheries, anthro-
pogenic climate change raises the stakes for understanding these
links and underscores the need to incorporate them into fishery
management.

Materials and Methods
Materials.
NAO. The NAO Hurrell winter, December, January, February, and March
(DJFM), station-based index measured in SDs from the mean was used from
1965 to 2017 (32). Positive values represent larger pressure differences,
which are associated with stronger-than-average westerlies and warmer-
than-average sea-surface temperatures off the Atlantic coast of the United
States (SI Appendix, section 1B).
Catch and revenue. The National Oceanic and Atmospheric Administra-
tion’s (NOAA) Annual Commercial Landings Statistics (33) were used for
landings and revenue by species within the New England and South Atlantic
regions for 1971 to 2017. The species in this analysis are summarized in SI
Appendix, Table S1 and represent 74% of the catch and 75% of the revenue
in the South Atlantic and 64% of the catch and 75% of the revenue in New
England (SI Appendix, section 1D).
Labor. The Bureau of Labor Statistics (BLS) commercial marine fishing wage,
employment, and establishment data by year and county area for 1990 to
2017 (NAICS subindustry code 11411) were used, as well as data for fish and
seafood markets and wholesalers, nonfishing industries, county-level unem-
ployment, employment, and labor force. Census Bureau data were used for
nonemployers in commercial marine fishing (SI Appendix, section 1A).

Further data including age at catch by species (SI Appendix, section 1E),
fishery management (SI Appendix, section 6), commercial fishing permits (SI
Appendix, section 1F), and sea-surface temperature (SI Appendix, section
1C) that were used to supplement the analysis can be found in SI Appendix.

Methods. There has been a growing literature on climate econometrics (19)
that exploits year-to-year variation in weather and climate data to quantify
climatic influences on agriculture, income, labor, mortality, crime, and even
gross domestic product (34, 35). Following this literature, especially as it
pertains to fisheries (7), I use the identifying assumption that NAO is uncor-
related with the error term, such that the year-to-year variation is applying
a shock that is developed outside of the fisheries system. This is what allows
the analysis to recover a causal signal on catch and fishing labor.
NAO and catch and revenue. First, I estimate the effects of NAO on total
regional catch or revenue using a log-linear regression with distributed
lags of NAO and flexible polynomial time trends (to account for secular
time trends). Due to the well-documented relationship between NAO and
biomass (21), I use the specification from Meng et al. (7) of regressing catch
on lags of NAO. These lags capture the delayed effects of NAO on catch due
to catch-size restrictions:

log(landingst) =ψ+
N∑

τ=0

δτNAOt−τ +
M∑

p=1

κptp
+µt. [1]

Landings are measured either in total regional metric tons of fish caught
and landed at the dock or in dollars of revenue of fish landed (SI Appendix,
section 1D). ψ is a constant, δτ captures the linear effect of NAO τ peri-

ods ago, and κp represents the effect of a pth-order polynomial time trend.
To determine the polynomial order, M, of the time trend, I use the Akaike
Information Criterion (AIC). Lower AIC values reflect a model’s overall good-
ness of fit while penalizing additional terms with limited explanatory power.
The AIC drops when higher-order polynomials are added but plateaus at
a fourth-order polynomial. The AIC is identical for fifth-order polynomials,
which is the main specification used in Fig. 2 (SI Appendix, Tables S3–S6). The
AIC is also used to select the number of lags, N, used in the model. For con-
sistency, a 6-lag specification is used for all of the results, as it has the lowest
AIC value for most of the outcome variables, including revenue, wages, and
establishments (SI Appendix, Tables S5, S8, and S9). This is also consistent
with catch size restrictions (SI Appendix, Table S1). Furthermore, the addi-
tion of a seventh lag does not show significance, but lags 1 to 6 remain
consistent with a 6-lag specification (column 7 of SI Appendix, Tables S5
and S7–S9). SEs, µt , use the Newey–West adjustment, allowing for arbitrary
forms of serial correlation and heteroscedasticity in the error term with an
optimal bandwidth (36). I also calculate cumulative effects of NAO lags on
total catch and revenue (SI Appendix, Tables S3–S6).
NAO and fishing labor. This paper uses a difference-in-difference strat-
egy to compare the effect of NAO on fishing labor in New England to its
effect on fishing labor in the South Atlantic. I use panel data on fishing
wages, employment, and establishments by county and year and define New
England counties as treated and South Atlantic counties as untreated. Using
a “donut hole” regression (37), I omit the Mid-Atlantic or border region (SI
Appendix, section 5). Since NAO shocks affect stock recruitment and then
propagate to catch over time, I use a log-linear regression with distributed
lags to identify the effect of contemporaneous and past NAO events:

log(Lct) =α+
N∑

τ=0

βτNAOt−τ × IcεNE

+
N∑

τ=0

γτNAOt−τ +φt +λc + εct.

[2]

Lct represents the labor variable of interest (wages, employment, or estab-
lishments) by county and year. I use an inverse hyperbolic sine† of the labor
variable in the main specification to transform zeros in the data (38, 39).
α is a constant and βτ captures the linear effect of NAO τ periods ago on
counties in New England (NE) compared to counties in the South Atlantic
(SA). The treatment is NAO τ periods ago interacted with a dummy, IcεNE ,
that equals one for counties in NE and zero for counties in the SA. The AIC
selects N = 6 as the best model for revenue, wages, and establishments. For
consistency, I use this lag structure as the main specification for all of the
outcome variables. φt are year fixed effects and λc are county fixed effects.
I test for the assumed log-linear form of the model (SI Appendix, Fig. S1)
as well as trending behavior (SI Appendix, Fig. S2). SEs are clustered at the
county level to flexibly account for within-county, across-time correlation.

Because NAO has an annual resolution (Fig. 1A) and impacts the control
and treatment regions, year fixed effects will be colinear with NAO and
lagged NAO. For completeness, regional NAO and its lags are included in SI
Appendix, Tables S16–S21 and show that coefficients for NAO and its lags
were omitted due to colinearity with year fixed effects. The model can be
rewritten as

log(Lct) =α+
N∑

τ=0

βτNAOt−τ × IcεNE +φt +λc + εct. [3]

For interpretation, I measure the cumulative impacts of NAO on labor from
1996 to 2017 by comparing the model with observed NAO to a model where
NAO is constantly neutral (SI Appendix, section 7). Heterogeneous, county-
level impacts are explored in SI Appendix, section 8.

Data Archival. All data and code necessary for replication of the results in
this paper are available for download at GitHub.
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√
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